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Executive Summary

This paper describes the system design developed by Team Gator Nation in preparation
for the 2007 DARPA Urban Challenge. A hybrid Toyota Highlander (see Figure 1) has been
automated and instrumented with pose estimation (GPS and inertial) and object detection (vision
and ladar) sensors. The control architecture consists of four primary elements, i.e. Planning
Element, Perception Element, Intelligence Element, and Control Element. The architecture is
implemented on a system distributed over ten single-board computers that intercommunicate via
the Joint Architecture for Unmanned Systems (JAUS) version 3.2 protocol.

The primary contribution of this work is that related to addressing the technical
challenges of (a) the reconciliation of differences in estimated global pose, a priori data, and
sensed information, (b) the determination of the appropriate behavior mode, and (c) the smooth
transition of vehicle control between behavior modes. The processes that perform these tasks as
well as the other necessary processes that perform perception, data integration, planning, and
control are described in detail together with their design rationale. Finally, testing results
accomplished to date are presented.

1 DISCLAIMER: The information contained in this paper does not represent the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency (DARPA) or the Department of Defense. DARPA
does not guarantee the accuracy of reliability of the information in the paper.

Figure 1: Team Gator Nation NaviGATOR
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1. Introduction and Overview

1.1. Team Overview

Team Gator Nation is comprised of twenty five faculty, students, and engineers from the
University of Florida Departments of Mechanical and Aerospace Engineering, Electrical and
Computer Engineering, and Computer and Information Science and Engineering together with
engineers from Smiths Aerospace. The personnel bring together a broad range of expertise in the
area of autonomous unmanned systems. The team participated in both the 2004 and 2005
DARPA Grand Challenge events under the name Team CIMAR.

1.2. Problem to be Solved

In DARPA’s vision, “The Urban Challenge features autonomous ground vehicles
maneuvering in a mock city environment, executing simulated military supply missions while
merging into moving traffic, navigating traffic circles, negotiating busy intersections, and
avoiding obstacles.” Moving the challenge into an urban setting adds structure and complexity
to the Grand Challenge problem. Previous success relied on a single mode of operation, without
interaction with the environment beyond simple traversal. Success in the Urban Challenge will
require numerous modes of operation and complex interaction with the environment. It is
expected that the urban environment will also hamper the use of GPS for localization, further
complicating the challenge.

The specific problem to be solved is detailed in the Urban Challenge Technical
Evaluation Criteria document [1]. Here the problem is organized into four categories, i.e. Basic
Navigation, Basic Traffic, Advanced Navigation, and Advanced Traffic, each of which is more
complex than the previous. Upon reviewing this document, the authors identified the following
set of technical challenges:

1. pavement (road) detection and lane detection

2. detection of static obstacles

3. detection and classification of dynamic objects

4. environment data representation and sensor integration

5. localization

6. reconciliation of differences in estimated global pose, a priori data, and sensed
information

7. high level mission planning

8. determination of appropriate behavior mode

9. smooth transition of vehicle control between behavior modes

10. interprocess communication and coordination of multiple threads on multiple computers

11. fault tolerance

This paper documents the design choices that have been made to address these challenges.

1.3. Prior Work and Impact of Current Effort

Much work has been done in the past twenty years to address many of the specific
technical challenges that are listed in the previous section. References [2]-[7] provide excellent
summaries of the advancements made by other teams competing in the 2005 DARPA Grand
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Challenge. References [8] and [9] present the authors’ work related to the 2005 event.
Numerous references can be cited for each of the important technical challenges, but are not
presented here due to space limitations.

The authors believe that the approach presented here makes new contributions primarily
with respect to items 6, 8, and 9 in the preceding list of technical challenges. Traditional
approaches, such as for example vision processing algorithms to identify lane markings in an
image, are modified as needed and integrated into the system. However, the work related to (a)
the reconciliation of differences in estimated global pose, a priori data, and sensed information,
(b) the determination of the appropriate behavior mode, and (c) the smooth transition of vehicle
control between behavior modes is identified as the major contribution of this effort.

1.4. Summary of Approach and Concept of Operation

The main function of the autonomous architecture is to generate control commands for
the vehicle that result in expected and desired behaviors in response to its mission and the
surrounding environment. The approach chosen allows for the behaviors required for the Urban
Challenge to be implemented without changing the control command generation methodology.
A challenge in vehicle control is maintaining consistency in the control commands thorough
time. If an approach requires changing the method of command generation as different
behaviors are required, much care is needed to ensure continuity in the control commands.

The overall approach is briefly summarized as follows:

(1) An off-line path planning program generates a desired motion path based on the Route
Network Definition File (RNDF) and the Mission Data File (MDF).

(2) A tessellated Local World Model (300m × 300m grid with 0.5m resolution) is generated
based on a priori road network data and the planned motion path. The center point of the
Local World Model is located at the current location of the vehicle as determined from
sensor positioning data.

(3) Data from ladar and vision sensors, which identify static obstacles, dynamic objects,
smooth terrain, and road lane regions, is integrated as a layer into the Local World Model.

(4) Based on the a priori data and sensed data stored in the Local World Model, software
components referred to as Situation Assessment Specialists focus on making specific
findings (one simple example is the specialist that reports if the lane to the left, or right, is
clear of other vehicles or obstacles).

(5) Six software components referred to as Behavior Specialists then make an assessment of
whether their corresponding behavior mode is appropriate at this moment. The six
behavior modes are Roadway Navigation, Open Area Navigation, Charge Lane, Reverse
Direction, Intersection Traversal, and Parking.

(6) A software component referred to as the Decision Broker selects the behavior mode for the
system based on the recommendations of the Behavior Specialists.

(7) Based on the behavior mode, a software component called the Smart Arbiter then generates
a 60m × 60m traversability grid that is formed to elicit a specific response from the vehicle
(change lanes is an example).
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(8) Finally, the Receding Horizon Controller component plans a suitable path through the grid
that was output by the Smart Arbiter. Steering, throttle, and braking commands are
generated to execute the planned path.

The design and implementation of this control approach is detailed in Section 2 of this
paper. The system components are shown in Figure 2, however the figure itself cannot convey
the nature of the interactions that occur between components as was presented in the list in the
previous paragraph.

1.5. System Architecture and Framework

The system architecture is a natural extension of the Joint Architecture for Unmanned
Systems (JAUS) Reference Architecture, Version 3.2, which defines a set of reusable
components and their interfaces. The actual core software to support the JAUS messaging
system was developed and extensively tested for the previous Grand Challenge and supports the
current effort with little or no modification required.

At the highest level, the architecture consists of four basic elements, which are depicted in
Figure 2. The Planning Element contains the components that act as a repository for a priori data
such as the RNDF and the MDF. This element will also perform the high level route planning

Figure 2: System Architecture



5

and re-planning based on that data plus real-time information provided by the rest of the system.
The Control Element contains the Primitive Driver that performs closed-loop control on vehicle
actuators to keep the vehicle on a specified path. The Perception Element contains the
components that perform the sensing tasks required to determine the vehicle’s position, to find a
road, to find the lanes on a paved road, to locate both static and dynamic obstacles, and to
evaluate the smoothness of terrain. Finally, the Intelligence Element contains the components
that work together to determine the best course of action to navigate the vehicle in a complex
environment based on the current mission and situation.

2. Analysis and Design

The detailed system design and design rationale are presented in this section. The
description is divided into ten sections, i.e. vehicle design, computer architecture, localization,
high level planning, local world model, perception, adaptive planning framework, behaviors,
smart arbiter, and motion execution.

2.1. Vehicle Design

A survey of COTS vehicles resulted in the consideration of hybrid type SUV’s resulting
in the selection of a Toyota Highlander Hybrid. This vehicle is a full hybrid, capable of running
on the electric power train and/or the V6 internal combustion engine. The vehicle has a wheel
base of 2.715 m, a width of 1.825 m and a height of 1.735 m. Vehicle weight as delivered is
1850 kg (4070 lbs). The Toyota Highlander Hybrid’s chassis has undergone NHTSA crash
testing. Toyota equips the vehicle with anti-lock braking, traction control, skid control, and
electronic power steering. It was desired that the automation design not bypass these Toyota
stability features.

The nature of a full hybrid requires that the throttle and brake be drive-by-wire.
Automation of these controls is effected via an interface with the brake and throttle sensors to
allow computer input of control signals to the vehicle control architecture. A servo-motor has
been installed on the steering column to replace the human input to allow drive by wire behavior
of the steering subsystem. The shift lever is automated via a servo actuator. The wiring harness
has been interfaced with to allow turn signals and brake lights to function as needed. The reverse
indicator lamps function as usual when the shift actuator places the vehicle in reverse. The drive
by wire implementation is controlled by a touch-screen tablet located in the front seat. This
computer handles the low level interface with the vehicle.

The Toyota Highlander Hybrid has an electrical system suitable for powering the
automation and compute resource requirements for the DARPA Urban Challenge. The high
voltage DC system includes a battery bank based on nickel-metal hydride cells. The bank has
high availability, able to provide 45 kw for short durations. The nominal voltage of the bank is
288 VDC. This battery system sources a 12 VDC output converter that replaces a conventional
alternator. The autonomous and compute power systems are sourced from both the high voltage
DC system and the 12 VDC system.

Safety protocols are implemented via in-car and on-car e-stop switches and an off-car
safety radio. The safety radio mimics the functionality of the Omnitech DGCSR(RX) safety
radio. Emergency stop is affected via a mechanical system that applies braking effort.
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2.2. Computer Architecture

Compute resources are designed and
specified to allow flexibility and expansion as
needed. Power system design for efficiency is a
major concern because power availability is the
driving limit on the maximum compute resources
deployable.

The compute resources system designed for
use in the Urban Navigator can consist of up to 12
ATX form factor motherboards with two available
Gig-E network switches. The resources are housed
in a custom designed and fabricated enclosure
mounted in place of the third row seat of the vehicle
as shown in Figure 3. Each motherboard is powered by a nominal 12 VDC sourced ATX power
supply. The power supplies are capable of maintaining operation down to ~8 VDC. The
compute resources currently deployed consist of 10 ATX server type socket AM2 motherboards
with dual Gig-E network controllers built in. The CPUs deployed are AMD X2 4600 EE’s.
Booting and storage resources are 4 Gigabyte compact flash cards and 80 Gigabyte laptop hard
drives. Operating systems deployed are Windows XP and Linux Fedora Core 6. I/O
connectivity for sensors has been implemented via USB or Ethernet, to minimize complexity.
The currently deployed system consumes between 25 and 45 amps at 14 VDC, depending on
system load. Again, the particular computer resources were selected to minimize power
consumption and to provide reliable operation.

In-car development is facilitated via a dual head KVM connected to all motherboards. A
rear facing monitor is mounted to the headrest of each front seat. Keyboards and pointing
devices are located in the second row seats. Off-car monitoring and development is affected by
an 802.11 b wireless bridge with a minimum 250 meter range.

2.3. Localization

Geo-localization is achieved using a Smiths
Aerospace North-Finding-Module (NFM) combined
with four GPS units and two odometers. The NFM is an
inertial navigation system that maintains Kalman Filter
estimates of the vehicle’s global position and orientation
as well as angular and linear velocities. The overall
system (referred to as GPOS) is shown in Figure 4.

The system design is predicated on redundancy
and relative accuracy when GPS is lost. The GPS signal
provided to the NFM will come from one of the four
onboard GPS units. They include two Novatel Propak,
V3-HP units with Omnistar subscription service, and
two Garmin WAAS Enabled GPS 16 units. An onboard computer simultaneously parses data
from the four GPS units and routes the best-determined signal to the NFM. This is done to
maintain the best available GPS information to the NFM at all times. The best GPS solution is
determined by evaluating each signal with respect to its unit type, mode of operation, HDOP,

Figure 3: Computer Rack and
Power Conditioning Equipment

Figure 4: GPOS Components
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RMS, number of satellites, and duration of uninterrupted signal among other criteria. The NFM
has been programmed to use a different set of tuning parameters in its Kalman Filter depending
on what type of GPS signal it is receiving.

In the event that all GPS units lose track of satellites, as seen during GPS outages such as
when the vehicle is in a tunnel, the NFM will maintain localization estimates based on inertial
and odometer data. This allows the vehicle to continue on course for a period of time; however,
the solution will gradually drift and the accuracy of GPOS will steadily decrease as long as the
GPS outage continues. Under ideal conditions the GPOS system typically maintains Global
position accuracies and repeatability in the range of 0.1 to 0.5 meters. Figure 5 shows five laps
around a 0.6 mile test track with GPS (blue lines) and five laps with no GPS (red lines). The
vehicle was driven as close as possible in the center of the road (road edges are 28’ apart and are
marked by green lines) for every lap. Without GPS, the NFM was using only the encoder signals
to damp the velocity errors. Under these conditions the GPOS system maintains Global position
accuracies less than 5 meters for a distance traveled of approximately 3 miles without GPS.

2.4. High Level Planning

The High-Level Planner (HLP) provides overall guidance to the Urban NaviGator. Its
high-level goals are to:

1. Create a representation of the RNDF that readily allows for efficient data manipulation
during route planning,

2. Use the MDF to plan a route through the RNDF representation using an A* algorithm
[10],

3. Periodically communicate waypoints to the Local World Model, so it has an accurate
record of the immediate planning space,

4. Re-plan a route when obstacles are encountered, and

5. Collect data from the sensors about the domain as it is explored and populate the RNDF
representation with these data so it contains a more accurate representation of the domain.

One problem with the RNDF is that it provides a rough representation of the entire
domain. Figure 6a shows four waypoints from the provided, sample RNDF. The light blue line
details the actual roads that should be followed while the dark blue line details the naïve, “as the
crow flies” path between these points. Initially, every road segment within the RNDF is flagged
as unexplored. When traversing a segment for the first time, “breadcrumbs” (additional

Figure 5: (a) GPOS Repeatability Data (b) Magnified View

(a) (b)
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waypoints) are created to fill in details about
the segment, and the segment is marked as
explored (see Figure 6b). The distance
between these “breadcrumbs” will vary
depending on characteristics (e.g., curves and
road surface) of the segment. These “bread-
crumbs” allow the representation of
additional details about the segment that can
be used as heuristic information by the A*
algorithm in planning later missions.

While the HLP maintains the overall
A* generated mission path, The Local World
Model works on a much finer (300m ×
300m) scale. Periodically, the HLP
determines and transfers to the Local World
Model a local long-range (150 meter ahead)
view of the domain. The Local World Model
uses this information for localized path
planning. As the Urban NaviGator advances
along the local path generated by the Local World Model, any generated “breadcrumbs” and
sensor data valuable to future path planning are communicated back to the HLP so they can be
added to its RNDF representation.

2.5. Local World Model

The Local World Model has multiple roles within the system architecture. First, it
generates a model of the world based on the a priori RNDF. It receives a subset of the RNDF
waypoints within a 300m × 300m area of the vehicle from the High Level Planner (HLP) and
draws an estimated picture of the world into a rasterized grid using a resolution of 0.5m. This
raster based approach was chosen because the output from the Local World Model can then be
easily incorporated into other system components. The grid resolution of 0.5m was chosen from
experience in the 2005 DARPA Grand Challenge, but can be varied depending on the mission.
For example, it is anticipated that a finer grid will be needed when maneuvering in a parking lot
scenario. Figure 7a shows an example of the 300m × 300m grid. Other components, such as the
perception components, which are discussed in the next section, work with a smaller 60m × 60m
grid. Any needed information is extracted from the 300m × 300m grid and can be transmitted to
any necessary components. Figure 7b shows such a sub-sampled grid.

After the initial estimate of the world is created from the RNDF, the Local World Model
will localize the vehicle position in the world using data from the GPOS component as well as
lane finding and path finding sensors. The lane finding and path finding sensors are incorporated
to account for possible discrepancies between the RNDF and the GPOS data. The Local World
Model takes the information about the sensed world such as the number of lanes detected and the
position of the center of the sensed lane, and adjusts the a priori world map to fit the sensed
world. Figure 8 gives examples where adjustment is necessary. In this figure, the black lines
represent the actual road as it is sensed relative to the vehicle, the brown lines are based on the
RNDF, and the blue rectangle signifies the vehicle position which is based on GPOS. In (a)
either GPOS is incorrect or the RNDF points are not in the lane. In (b) the waypoints do not

(a) (b)

Figure 6: (a) Sparse RNDF Data ; (b) RNDF
Data Augmented with History Information.
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describe the road accurately. Using data from the lane and path finding sensors the Local World
Model accounts for these errors. In (c) the RNDF map has been shifted to align the RNDF road
and the sensed world. In (d), the Local World Model has added additional waypoints to correct
for the discrepancy between the RNDF and the real road.

Next, The Local World Model is responsible for characterizing, predicting, and injecting
dynamic information into the world model, which can then be propagated throughout the system.
A list of objects is received from the Moving Object and Classification sensor which provides
the position, velocity, and size of the detected objects. The Local World Model overlays these
objects onto the world map and estimates their future position based on velocity and direction of
travel. A probabilistic determination of the future position is used to give regions where it is
highly likely the vehicle will be. The addition of the moving obstacle information allows the
Urban NaviGator to have a better understanding of what is happening in the world. Figure 9
shows the Local World Model output with a moving obstacle shown in blue and its estimated
future position shown in red.

(a) (b)

Figure 7: (a) 300m × 300m Raster Local World Model ;
(b) Sub-sampled 60m × 60m Grid.

(a) (b) (c) (d)

Figure 8: Arbitration of Discrepancy in GPOS Data,
RNDF Data, and Sensed Data
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Finally, the Local World Model dynamically spools
waypoints to the Receding Contro. After the HLP has
planned a path that completes the mission, it provides a
rough plan to the Local World Model that contains only
the checkpoints, entry points, and exit points that need to
be traversed. The Local World Model then takes the rough
plan and fills in the intermediate waypoints that need to be
traversed to travel from one HLP point to another. This
provides the flexibility to modify the waypoints that need
to be traversed based upon the current operating behavior
without re-planning the overall mission. Figure 10 shows
the change in the mission waypoints based upon a change
in the operating behavior. In (a) all the mission points sent
by the HLP are shown. This mission involves making a
loop around the course and coming to a stop at the segment at the bottom. In (b) a number of
intermediate points have been filled in to be sent to the RN. All points up to a set distance away
from the vehicle are sent. In (c) the mission points have been shifted to the other lane in order to
execute a change lane behavior due to the obstacle (in blue) detected in the same lane.

In summary, the Local World Model provides a detailed 300m × 300m representation of
the environment around the vehicle. It receives a priori roadway data from the High Level
Planner as well as static and dynamic obstacle and lane information from the perception system.
The Local World Model constantly estimates any discrepancies between the a priori and sensed
data by calculating a net offset that can be applied to the a priori data in the event that sensed
data is momentarily lost. Lastly, the Local World Model maintains a list of mission goal points

that identify the correct lane of travel. This information is transmitted to the Roadway Navigator
(discussed subsequently) for motion execution.

2.6. Perception

2.6.1. Sensors

The sensor packaged deployed on the vehicle includes an array of LADAR and vision
sensors. These include six of the SICK LMS-291 type LADARs, two of the SICK LD-LRS1000
long range LADARs, six Matrix Vision BlueFox high-speed USB2.0 color cameras, and an
additional BlueFox camera configured to see in the near IR band. Moreover, many of the

Figure 9: Moving Obstacle
Depicted in Local World Model

(a) (b) (c)

Figure 10: Dynamic Update of Intermediate Points
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sensors deployed on the vehicle are articulated with one degree of freedom. Figure 11 depicts
the sensor configuration.

The LADAR sensing package is designed to provide high-rate obstacle and terrain
evaluation. To do so, three categories of sensing components were designed to meet the needs of
obstacle avoidance and terrain characterization. These categories include long-range obstacle
detection, medium/short-range obstacle detection, and terrain classification.

For long-range detection two SICK LD-LRS1000 LADARs were mounted on both driver
and passenger front quarter-panels. These sensors provide effective range information to 300
meters at rates of up-to 15 Hz with resolution at distance to within one meter. Moreover, the
sensors are vertically offset to allow for the perception of differential height obstacles and to
prevent the inadvertent flashing of each LADAR by the other.

Medium/short-range obstacle detection is accomplished by considering both obstacles
detected by the long-range sensors in addition to those
detected by any of the six LMS-291 type sensors. Of
these, two are oriented in a planar fashion on articulated
mounts, located on the front and rear bumpers, which
allow the sensor to be pitched from 90° below to
20°above the plane of the vehicle. This feature is used to
accomplish both enhanced terrain classification in tight-
spaces such as parking lots as well as to maintain
parallelism with the horizon of the road surface during
roadway navigation behaviors. Figure 12 illustrates the

front actuated planar LADAR.

Negative obstacle and terrain classification is
accomplished primarily through the use of an additional
two LMS-291 LADARs mounted on the forward of the
roof of the vehicle in a downward-pitched orientation
with their focal points set at 20 and 30 meters
respectively. These sensors are complemented by
another two LMS-291 sensors located on the overhanging

(a) (b)
Figure 11: Sensors

Figure 12: Front Actuated
Planar LADAR

Figure 13: Sensor Bridge
Components
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wings of the sensor bridge on the vehicle roof. These sensors are also articulated and are
configured in a vertical-fan orientation. The articulation of the vertical fan sensors provides
active measurement of the environment surrounding the vehicle and plays a major role in vehicle
behaviors including changing lanes, parking, and intersection behavior. Figure 13 depicts the
sensor bridge located on the top of the vehicle.

2.6.2. Common Services

The sensor architecture deployed on the vehicle was designed to have common services
and interfaces. These common services include the distribution of acquired sensor data from
various sources (serial interfaces, Ethernet, USB, etc.) to other computing nodes who are
requesting the information. All such data-traffic is handled on a managed L2 Gigabit Ethernet
switch which is dedicated to sensor traffic. The services provided include streaming computer
vision information, LADAR range data, and actuator feedback information. This information is
consumed by various computing nodes known as Smart Sensors and used to generate high level
information about environment traversability, obstacle detection, and vehicle localization.

2.6.3. Smart Sensor Concept

The smart sensor concept unifies sensor data and
results into a generic format. To do so, a standardized
data format and representation was designed which
serves as the common data structure for the generation,
transfer, and analysis of sensor information. This
representation, known as a Traversability Grid, consists
of a tessellated grid which is tied to a geo-spatial
location at the time of generation. The grid, utilized in
the previous Grand Challenges, has been expanded to
provide a finer resolution of both traversability (the
measure of cost for traversing a spatial location) and an
expanded set of reserved values [8]. Moreover, the
information represented in the grid can easily be used by arbitration components to generate
higher order information and implement behavioral changes to drive planning and control
components to successfully reach their goals. Figure 14 depicts three example traversability
grids and the result of sensor fusion by an arbitration component.

By utilizing a common data representation, developers can work independently of
arbitration components. Moreover, the Smart Sensing components can operate asynchronously
at a wide variety of rates and grid resolutions due to the spatially located nature of the
traversability grid [11]. This is possible due to the spatial mapping of each grid as it is fused
with the other available sensor information. Thus, the arbitration process takes into account the
geo-spatial offsets between the various Smart Sensor traversability grids when fusing their
information such that the resulting representation is consistent as the vehicle moves regardless of
speed, orientation, or position.

2.6.4. Traversability Smart Sensor

The traversability smart sensor was the primary sensor component that was used by the
authors in the 2005 DARPA Grand Challenge. It is incorporated here because it identifies safe
regions of travel, i.e. areas where there are not obstacles to impact and areas where the terrain is

Figure 14: Smart Sensor
Traversability Grid Fusion
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relatively smooth. Additional smart sensors will be discussed subsequently that address the
specific problems of road and lane detection and dynamic object detection which are critical to
success in the Urban Challenge.

The traversability smart sensor component utilizes the eight LADAR based sensors on the
vehicle to perform analysis for static obstacle characterization, terrain evaluation, and negative
obstacle detection. These analyses are accomplished by utilizing the raw range and orientation
information provided by each of the LADAR sensors to generate a point-cloud representation of
the data. The general point information then undergoes a series of spatial transformations such
that all data is mapped relative to the vehicle’s inertial corrected global position and orientation
(GPOS).

i) Vertical Obstruction Detection and Localization

The process of detecting vertical obstacles surrounding the vehicle is driven primarily by
information obtained from the front and rear planar LADARs. This data provides consistent
information about obstructions which are taller than the vehicle’s bumper height and represent
regions of the environment which are non-traversable. The two LMS291-S05 sensors provide
range estimates in 0.5° increments over a 180° arc at 76 Hz. The articulated sensors attempt to
maintain the plane of their measurements parallel to the ground plane with an offset equal to the
0.5 meter mounting height of the sensors. The globally mapped data points generated by the
sensors are then mapped into the corresponding traversability grid cell in which they are bound.
By maintaining statistics regarding the number of hits in a given cell, a traversability value is
assigned. Moreover, the area between cell hits and the origin of the vehicle is designated as free-
space. This is accomplished by the use of Bresenham lines drawn from the location of a hit cell
to the sensor’s origin. The cells returned by the Bresenham lines then have their number of hits
reduced, and their traversability re-evaluated.

ii) Terrain Estimation and Characterization

Terrain estimation is accomplished by considering
data generated by both the articulated vertical fan ladars
located on the sensor bridge wings and the two forward
facing pitched ladars on the center of the sensor bridge. By
first mapping the globally referenced data points into the
appropriate grid cell locations, the data is then analyzed for
the variance, slope, absolute height, and mean height to
generate an estimate of the best fitting plane within each
given grid cell [12]. By comparing the slope and height of
each plane in both an absolute sense and relative to the planes
in neighboring cells an estimate of traversability is assigned
to the given cell. Figure 15 depicts the output of the terrain
estimation process.

iii) Negative Obstacle Detection and Localization

The detection and localization of negative obstacles is
completed by considering the same data set used for terrain
estimation. Particularly, the two forward facing terrain LADARs provide the most critical
information regarding negative obstacles in the immediate path of the vehicle. To this end, the

(a) Photo of range

(b) Terrain Estimation Grid

Figure 15: Terrain Estimation
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slope of the forward facing terrain ladars was tuned through testing with various sizes of
negative obstacles such as pot-holes, ditches, and cliff-like changes in grade. Through this
testing which has spanned the previous two Grand Challenges, an optimal declination for each
LADAR was found to be 10° and 20° respectively. This declination results in the scan-lines of
the LADARs hitting at roughly 32 meters and 20 meters ahead of the vehicle while on a
relatively level road. The process of evaluating the information provided by the sensors for
negative obstacle detection is similar in nature to that of terrain estimation. However, the focus
of the negative obstacle evaluation is to look for sudden and drastic changes in range along the
scan line. Such dramatic changes in range indicate that a given scan-line or region of a scan-line
has crested over the threshold of a drop-off or hill and indicate a possibly hazardous part of the
environment. Figure 16 displays two such cases where terrain and negative obstacle generate

obstacle information.

2.6.5. Lane Finding Smart Sensor

The Lane Finding Smart Sensor (LFSS) is a vision based sensing component which
generates traversability information corresponding to the perceived locations of lane
demarcations. Through a combination of analyses, images captured from each of the three
forward facing and one rear facing BlueFox cameras are processed to yield geometric
representations of significant painted demarcations and natural boundaries [13]. These entities
are then analyzed for color content based on an adaptively tuned set of tolerances and classified
appropriately. The result of the lane detection is a consistent and robust 2nd-order estimate of
the location and orientation of perceived lane demarcations.

i) Lane Demarcation Detection and Localization

Detection of painted and natural lane/road demarcations is accomplished by considering
multiple environmental cues. These cues include intensity, color content, shape, and orientation.
To begin, the component takes a captured image and performs a row based analysis to detect
significant points of interest. These points of interest are then used to extract sub-images from
the source image which will then be searched for any dominant linear elements. This process is
depicted in Figure 17.

The extraction of linear elements is performed by using the standard Hough
transformation. The resulting sequence of linear elements is then sorted to find the most
dominant linear element (if any) in a given sub-image. After extracting all significant line
elements from the image, the resulting lines are first added to an optimized binary heap for
sorting according to angular orientation in a polar reference frame with the origin at the upper
left of the source image [14]. This sort aids in the rapid clustering of related elements into
groups who are spatially related. Again, by utilizing a binary heap sorted on angular orientation,
a first order approximation of the curve the cluster of line segments represents can be generated.
This approximation is then used to generate a mask image as shown in Figure 18.

(a) (b)

Figure 16: Traversability Smart Sensor (a) Terrain Estimation (b) Negative Obstacle Detection
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(a) (b)

Figure 17: Line Finder Image Analysis (a) Region of Interest Extraction
(b) Linear Element Extraction.

The resulting masks are applied to the source image sequentially to analyze the color
content in the masked region. This process serves both to identify the color and type of the line
entity. The color analysis process is discussed in detail in the following section. When the
analysis is complete, each cluster’s point data is used to solve a second order approximation by
use of the Least Squares method where the optimization function and the resulting partial
derivatives are of the form [15]
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(c) (d)

Figure 18: Line Finder Image Masking (a) First Mask (b) Second Mask
(c) Image from Masks (d) Least Squares Curves
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By solving the subsequent partial differential equations and for each clusters data set, a
series of quadratic approximations are generated. These approximations have to date proven
fairly robust given the cluster generation process.

ii) Color Classification and Adaptive Tuning

The color classification of the masked regions of the source image is performed in two
processes: k-means clustering for adaptive tuning and color segmentation. The first process
begins by taking sub-sampled training regions from the masked image. The RGB content of the
cells in the masked regions are then used to populate a point distribution where the red, green,
and blue values of each pixel in the region are mapped to the x, y, and z axes respectively [16].
A sample training region and distribution is presented in Figure 19.

(a) (b)

(c) (d) (e)

Figure 19: Color Distribution of Training Region Data

The color distribution depicted above is then processed using the k-means clustering algorithm to
minimize the average deviation from the dominant line which is fit to the clustered pixel
information. The k-means algorithm is expressed as
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where x is the RGB pixel vector,  is the RGB K-mean, k is the number of clusters, and i is the

number of pixels. With the color distribution generated from the training region, each mask
undergoes color segmentation to evaluate whether a given pixel is likely white, yellow, or
otherwise. By then analyzing the resulting set of segmented pixels, an estimate of the line’s
color content is generated as a normalized percentage of yellow and/or white content. By using
multiple such training regions through the various masks, the color thresholds used in the
segmentation process become more robust to dynamic changes in lighting or transient elements
in the image such as glare and shadow. Figure 20 depicts the color segmented masks for the
yellow and white channels of a given source image.

(a) (b)

Figure 20: Color Segmented of Masked Regions (a) Yellow Channel (b) White Channel
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From the above results, statistical information is generated including the number of color
classified pixels, the total pixels in the mask, and the variance of the pixel content within the
mask. Finally, a normalized percentage representation of how “yellow” or “white” is generated.
The results of the normalized comparison of the number of pixels found to be of a given color to
the total number of pixels found in the segment provide a estimate of the likelihood that a given
cluster of line segments represent a given color of line. Moreover, the lack of significant color
content to a region which has significant line content can be discerned to imply a natural
boundary or transition from road to the surrounding environment.

iii) Stop-Line Detection and Localization

In addition to the statistics generated by the color segmentation process and the element
clustering process, an estimate of the general-lane-orientation is produced by averaging the
linear elements of the most significant clusters in the image. The result is a reasonable estimate
of the orientation of the perceived road. From this information each cluster’s average slope is
then compared to that of the overall average in an effort to find any significant deviations. Such
deviations indicate that a cluster is not only significant but also generally normal to the direction
of the road. Such segments are inferred to have potential to be stop-lines. Figure 21 shows an
example of an element cluster which has been determined to have significant divergence from
the general orientation of the road and the sub-image which is extracted for further analysis.

Figure 21: Stop-Line Detection

By generating an estimate of the location of the perceived stop-line, the smart sensor can
aid in both safe roadway navigation and correction of a priori mapping data contained within the
RNDF. These processes are discussed further in the section on Metadata generation.

iv) Traversability Grid Mapping and Generation

Thus far, the results of the various image processing techniques has only been discussed
in terms of the perspective image space provided by the camera. However, to utilize the results
of these analyses, the information must be mapped into the standard traversability grid. This
process is accomplished through the use of a pre-calibrated transformation matrix and rotation
matrix to project the pixel information from image-space to grid-space. The transformation
matrix is generated from camera calibration data and then used to project the calculated line
entities onto the traversability grid. However, whereas in the past Challenges, the entire image
was mapped, the improvements in the most recent vision components and the geometric data
they extract make it possible to project only a select set of points along each element. From
there, the elements are reconstructed in the grid-space as a series of connected linear elements
which approximate the original curve(s). Figure 22 depicts a sample lane-finder traversability
grid with current, left, and right lanes painted.
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(a) (b)

Figure 22: Lane Finder Traversability Grid (a) with lane boundaries and center estimation
(b) with painted lanes

v) Metadata Generation

In addition to the basic grid representation of the perceived lanes and stop-lines, the Lane
Finding Smart Sensor provides abstracted information in the form of metadata. This metadata
currently contains information regarding the number of lanes perceived, the type of boundaries
of the lane the vehicle currently occupies, and estimates of lane width at various distances ahead
of the vehicle. Moreover, the metadata contains the estimated relative position of any perceived
stop-lines and the vehicle’s relative-pose within the lane. The later of the metadata is critical in
both a priori correction and learning, and is also important in driving numerous behaviors.

2.6.6. Moving Object Detection and Localization

One of the most critical smart sensing components in development is the Moving
Obstacle Smart Sensor (MOSS). The MOSS is responsible for the detection, localization, and
classification of both moving and static obstacles which are perceived to either be in motion or
have the potential to move. It should be noted that the choice of sensors for long-range detection
was driven by the need to perceive moving obstacles to provide the necessary time response. In
other words, the range of the chosen SICK LD-LRS1000 LADARS is a function of the minimum
safe detection radius to provide a ten second decision and action period given a moving obstacle
at a speed of 30 mph while assuming a closing speed of 60 mph. From these design criteria it
was determined that the vehicle must be able to detect moving obstacles at a minimum range of
270 meters.

The detection process is accomplished via a fusion of sensing technologies. Foremost is
the use of the long-range LADAR array. The raw range data returned by the array of planar-
oriented LADARs is evaluated for vehicle sized obstructions. From this analysis a list of
potential dynamic obstacles is generated. The list is then used to drive a vision based
classification process which utilizes Haar classification. Next, the raw range data provided by
the LADAR is mapped to an image and processed using the Hough transform to extract linear
elements [17]. From this map, the relative orientation and location of the candidate obstacles is
generated. Haar classification is then completed on the regions of the image which have been
flagged as likely containing a vehicle. The classification then confirms or refutes the assertion
that the obstacle in the given region is a vehicle. It is important to note that detecting stopped
vehicle is as important as detecting moving ones as a stopped vehicle’s future actions are
inherently unpredictable. The result of these processes is the generation of a standardized vector
representation of all candidate moving obstacles [18]. Information regarding the obstacle’s
location, velocity, classification, and eventually intent (turning, braking, changing lanes) is then
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provided to higher level planning elements to take appropriate action. Figure 23 depicts the
sample output of the Moving Obstacle Smart Sensor.

(a) (b)

Figure 23: Moving Obstacle Smart Sensor (a) Original Scene (b) Point Data with Hough Lines

2.6.7. Path Finding Smart Sensor

The objective of the path finding smart sensor is to detect pavement regions. This is
important in cases where a road has no lane markings or the lane markings are in poor condition
or obscured. Vision based and ladar based components are integrated to accomplish this task.

i) Vision Based Path Finding

The Vision Path Finding Smart Sensor (VPFSS) utilizes the same color segmentation
process employed in the Lane Finding Smart Sensor component with the exception that it is
trained to search for asphalt and other such road materials and textures. By applying the
segmentation to the captured images the component provides a simple yet powerful
approximation of where the road is located and adds value to the arbitration process. Figure 24
depicts the output of the VPFSS.

(a) (b) (c)

Figure 24: Vision Path Finding Smart Sensor (a) Original Scene
(b) Segmented Image (c) Traversability Grid

ii)LADAR Based Path Finding

The LADAR based Path Finding Smart Sensor (LPFSS) functions in much the same
manor as the VPFSS in that it relies on a combination of image processing techniques to extract
a simplified estimate of the location of smooth, drivable terrain. By generating a topographic
image of the terrain from the terrain estimation LADAR data, the component generates a virtual
picture of the terrain. This picture is then processed through a series of thresholds, erosions, and
other enhancement filters to isolate the flat and smooth regions of the image. Figure 25 depicts
this process and the resulting traversability grid.
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(a) (b) (c)

Figure 25: LADAR Path Finding Smart Sensor (a) Topographic
(b) Threshold (c) Traversability Grid

The resulting traversability grid is then processed for line content to determine the right
most dominant linear bound of the path which in turn is used to maintain a right bias while
operating in an unstructured environment.

2.7. Adaptive Planning Framework

Team Gator Nation has developed and deployed the Adaptive Planning Framework [19]
to address the issues associated with behavior mode selection. This concept is presented in this
section. The specific behaviors and arbitration strategy associated with the Urban Challenge
problem is presented in the subsequent two sections.

In the Adaptive Planning Framework, the system is assumed to be able to operate in a
finite number of behavior modes. These behavior modes govern how the vehicle operates under
various driving conditions. The framework is predominantly used to make intelligent decisions
pertaining to these behaviors. The framework is scalable to systems of varying complexity and
size and is compatible with existing architectures such as JAUS RA-3.2, NIST 4D/RCS, and
others. The Adaptive Planning Framework is composed of three principle elements tasked with
assessing the situation, determining the suitability and viability of all possible solutions, and
executing the most suitable of all recommended solutions.

2.7.1. Situation Assessment Specialists

Dynamic environment information, originating from any array of sensors is monitored
and managed by the Situation Assessment Specialists. Each specialist design is tailored to the
sensor or collection of sensors whose data it will be analyzing. These specialists can, but are not
required to, “live” on the same computing node that directly receives the sensor input. While the
inputs to the specialist can come from any data source, the output or “finding” must adhere to
specific guidelines outlined by the framework. Findings can be in the form of conditions, state,
or events. A condition may have a value of present or absent only. All conditions are by default
absent and must be proven present at each iteration. A finding classified as a state can only
exhibit one of many a priori states. The event category is reserved for findings whose
occurrence at some point in time is of significance even after the initial finding has passed. Once
the findings have been generated the information is disseminated to all other components that
might need it.

An example of a situation assessment specialist would be a software component whose
sole function was to determine if it is safe to move to the adjacent lane. This component would
monitor sensor data as reported by the Traversability Smart Sensor and reach a Boolean
conclusion which would be stored as metadata for use by other processes. A second example
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would be a software component whose sole function was to determine if it is ‘legal’ to move to
an adjacent lane. Here ‘legal’ is defined as not crossing a yellow line or not changing lanes
when near approaching an intersection.

2.7.2. Behavior Specialist

The findings rendered by the Situation Assessment Specialists are consumed by the
behavior specialists. There is a one-to-one mapping of each behavior with a behavior specialist.
The role of the specialist is to monitor the findings and evaluate the suitability of its behavior
under the current perceived operating conditions. As with the specialist findings, the default
recommendation is unsuitable and must be proven appropriate at every iteration of the program
to ensure truth of the results and operating safety. This specialist does not possess the ability to
activate or deactivate its associated behavior; such authority is only given to the Decision
Broker.

2.7.3. Decision Broker

At the highest level of the framework lies the Decision Broker. Its role is to monitor all
Behavior specialist recommendations. It assumes ultimate authority over how the Urban
NaviGator will operate while in autonomous mode. Like the other entities within the framework,
the Decision Broker can base its conclusions on not only the recommendations and findings of
other specialists, but it may also look at data from any other pertinent source. Team Gator
Nation’s implementation of the Adaptive Planning Framework centralizes all the Decision
Broker functionality within the JAUS Subsystem Commander and has the added responsibility of
selecting which component receives control of the vehicle’s JAUS Primitive Driver. The
framework architecture employs an asynchronous, iterative, forward chaining reasoning
approach to decision making.

2.7.4. Data Marshalling and Metadata

The Adaptive Planning Framework does not specify a specific means for data
marshalling nor does it restrict the system architect to a particular data type or structure for
distribution. The Urban NaviGator deployed by Team Gator Nation is JAUS RA3.2 compliant.
Consistent with the team’s existing JAUS implementation, the Adaptive Planning Framework
data transport uses a publish/subscribe model. This allows for an arm’s length transaction
between parties and eliminates a step in latency associated with a centralized blackboard
approach. Truth maintenance and transport is handled by way of a JAUS Node Manager with
added Metadata Management capability. A component may simply subscribe to a publisher’s
“mailing list” and they will automatically receive an update every time that publisher has an
updated finding or whenever there is a periodic synchronization pulse. Furthermore the
subscribers will have knowledge of publisher’s state and will be aware of any abhorrent behavior
that may lend itself to misinformed findings.

2.8. Behaviors

The Urban NaviGator is programmed with six behavior modes. The corresponding
behavior specialist constantly evaluates the appropriateness of its behavior mode and the
decision broker determines which mode will have operation of the vehicle.
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2.8.1. Roadway Navigation

The Roadway Navigation behavior is the primary driving behavior deriving commands to
be sent to the vehicle actuators while the objective is lane following. This behavior will allow
the vehicle to navigate the roadway within the lines of its desired lane and maintain a safe
following distance behind any vehicles ahead.

2.8.2. Open Area Navigation

Open area navigation is a behavior that should only be needed in special circumstances
during the Urban Challenge event. This behavior allows the vehicle to move towards a goal
location without striking any object and while avoiding any rough terrain. This is in effect the
only behavior mode that was required in the 2005 DARPA Urban Challenge. It will be useful in
the Urban Challenge when the vehicle is in an open area such as a parking lot prior to performing
an actual parking maneuver.

2.8.3. Change Lane Maneuver

The change lane maneuver will be used in passing situations or in cases where the vehicle
must change lanes in a multi-lane road in order to pass through a mission goal point. The
behavior will constrain the vehicle to remain within the lane boundaries of the new lane.

2.8.4. Reverse Direction

This behavior is called whenever it is determined that the current lane is blocked and
there is no alternate clear lane available for passing. It will also be applicable in cases where the
vehicle has traversed into a ‘dead end’ road in order to reach a mission goal point.

2.8.5. Intersection Traversal

The intersection traversal behavior will be applicable when the vehicle enters the vicinity
of an intersection. This is one of the most complicated behavior modes in that the system must
rely on a series of situation assessment specialists to safely navigate the intersection. This
behavior mode must handle queuing, stopping at the stop line, determining right of way, and
ultimately traveling through the intersection while avoiding other vehicles.

2.8.6. Parking Lot

This behavior must deal with the problems that arise in the parking lot scenario where
precise motion is necessary. When the vehicle approaches the vicinity of an assigned parking
space, precise path planning will be initiated to align the vehicle as required. Situation
assessment specialists will be monitoring the near surroundings of the vehicle to center the
vehicle in its parking space while avoiding any static or dynamic objects.

2.9. Smart Arbiter

The purpose of the Smart Arbiter component is to generate a 60m × 60m traversability
grid, centered at the vehicle’s current position, which is used to implement a desired behavior.
Motion execution, which is discussed in the next section, is accomplished via an A* search
through this grid to determine the least cost path. In most cases, the least cost path will be
obvious as the grid has been constructed to accomplish a desired action. An important feature of
this entire approach is that specific behavior modes can be changed with smooth continual
control of the vehicle.
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The Smart Arbiter will attain inputs from the
Terrain Smart Sensor, the Lane Finding Smart
Sensor, the Path Finding Smart Sensor, and the
Local World Model and will build its grid based on
the current behavior mode of the system. For
example, if the system is in the Roadway
Navigation behavior, then the grid cells
corresponding to the positions of the line on the
edge of the lane as identified by the Lane Finding
Smart Sensor will be marked as non-traversable
regions in the Smart Arbiter grid. The cells
corresponding to the road lane will be marked as
highly traversable. This will prevent the planner from planning outside the current lane.

2.10. Motion Execution

Real time motion planning is accomplished via a receding horizon controller. Receding
horizon is a form of model predictive control (MPC) used to solve complex and constrained
optimization problems [20]. The application of suboptimal MPC to nonlinear systems such as
the Urban NaviGator is given in [21]. In this case, receding horizon control is used to optimize a
trajectory through the traversable space the vehicle will encounter. Inputs to the control
component include the sensed, cumulative 60m × 60m traversability grid which is assembled by
the Smart Arbiter component.

Local path planning is accomplished by means of an A* search algorithm [22]. The goal
is to optimize the cost of the trajectory from the current vehicle position to a goal position, and
thereby find a set of open loop actuator commands that minimize the cost of traversal. The
search finds different trajectories by generating possible input commands and extrapolating them
through a vehicle kinematics model. The model used is that of a front-wheel steered, rear-wheel
drive vehicle. The costs of the different trajectories are based on distance traveled and the
traversability grid values encountered. Figure 26 shows path segments that were searched and
the final determined path. Tests with the algorithm have shown that it is able to calculate an
optimal path at an update rate over 30 Hz.

Closed loop control is achieved by repeatedly running the optimization algorithm as
traversability grid data and vehicle state information are updated. Steering actuator commands
are optimized through the A* search, while throttle and brake commands used to control speed
are handled using a simple PID controller.

3. Results and Performance

The previous section presented the ten primary elements that comprise Team Gator
Nation’s NaviGator vehicle system. Although much of the discussion focused on how each
element works, information was also presented about why each element was designed as it was.
Implementation examples and results associated with most of the ten elements were presented in
the previous section for clarification. This section will focus on results and performance
associated with integration and implementation. It must be noted that the development process is
ongoing so that complete results are not presently available.

Figure 26: Path Search Algorithm
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Figure 27 shows the results from a recent Roadway Navigation test. The roadway is
marked by the green lines and has a nominal width of 28’. Figure 27b shows a magnified view
of one of the corners. Lane tracking and traversal have been successfully demonstrated as shown
in the figures. Although this is a simple result, it does also demonstrate that the necessary
components such as the Local World Model and the Smart Arbiter have been developed and
integrated with the Receding Horizon controller and the Primitive Driver. These are the
important building blocks that must first be in place before the more complicated behavior
modes can be introduced.

Team Gator Nation is working hard to implement all Basic Navigation and Basic Traffic
behaviors in June 2007. This will of course be followed by the advanced functions that are
required for the Urban Challenge.

4. Conclusion

The performance requirements identified in the Urban Challenge Technical Evaluation
Criteria are challenging. The system must be able to detect and model its environment and then
plan and execute appropriate actions in real time.

The approach described in this paper was generated after careful consideration of the
design requirements. The central concept is the integration of a priori and sensed information in
a raster format in the Local World Model. Based on this information, an appropriate behavior is
selected via arbitration. The behavior is executed by generation of a Roadway Navigation grid
coupled with metadata.

The primary new contribution of this approach is that related to solving the technical
challenges of (a) the reconciliation of differences in estimated global pose, a priori data, and
sensed information, (b) the determination of the appropriate behavior mode, and (c) the smooth
transition of vehicle control between behavior modes. These particular developments are being
implemented and integrated with the necessary hardware and software components to address the
requirements of the DARPA Urban Challenge.

Figure 27: Data from Autonomous Roadway Navigation

(a)
(b)
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